Text Box: NEXT
 

                                                                         

Text Box: PREVIOUS

 

  

3.3 Solid Object Motion

 


 

Linear and angular velocity vectors have derivatives which are known as linear and angular motion, that is:

 

Text Box: d

      .      

   BVQ   =     ___  BVQ   =  lim           BVQ (t + Δt)  -  BVQ . (t)           

Text Box: dt
                                     Δt        0   _________________________________             (3.20)

                                                                          Δt

 

and,

 

Text Box: d

           .               

     BΩQ   =  ____   BΩQ  =   lim                   BΩQ (t + Δt)  -  BΩQ . (t)

Text Box: dt
                                        Δt        0    _________________________________            (3.21)

                                                                                Δt

                                                                             

 

With velocities, the reference frame of the differentiation become the universal frame, {u} .

 

                                        .

                ύA = u V AORG                 (3.22)

 

and

                         .             .

                        ωAu Ω A              (3.23)

 

 

 

3.3.1  Linear motion  

 

 

Describe the velocity of a vector  BQ  as:

 

 

                        AVQ = A R BVQ + AΩB  x  A R BQ              (3.24)

                           B                                B

 

The left hand side of this equation show AQ is changing in time. Rewrite (3.24) as:

 

Text Box: d

 

        

            ___   A R BQ      =  A R BVQ  +  AΩB  x  A R BQ            (3.25)

                     B                     B                                     B                                                                                                    

                               

     

  

Text Box: dt

By differentiating (3.24), it can be deriving the expression for the acceleration of   BQ     this become:

 

 

         

Text Box: d
Text Box: d
  

   .                                                      .                                            

Text Box: dt
Text Box: dt
AVQ     =  ___  A R BVQ  + AΩ A R BAΩB   x  ____  A BQ         (3.26)                                                                                                          B                                    B                                             B

 

           

  

 

 

Now applying (3.25) twice, once to the first term and once to the last term. The right hand side of equation (3.26) becomes:

          

 

           

             .                                                    .

A R BVQ AΩB  A R BVQ + AΩB  x  A R BVQ AΩB  x  A R BVQ  +   AΩB  x  A R BQ       (3.27) 

B                                  B                                  B                                 B                                     B   

 

 

 

 

               

 

By combining two terms this will become:

 

 

             .                                                     .

A R BVQ + 2AΩB   A R BVQ  +  AΩB   A R BVQ  +  AΩB   x     AΩB  x  A R BQ                (3.28) 

B                                     B                                     B                                                        B

 

 

      

 

 

Finally, by adding one term this gives the linear acceleration resulting in the final general formula:

 

 

 

 

    .                           .                                          .

A VBORG  +  A R BVQ  +  2AΩB  x  A R BVQ +  AΩB  x  A R BQ  +  AΩB  x   AΩB  x  A R BQ       (3.29)

                         B                                       B                                    B                                    B   

       

    

 

When  BQ   is constant,

 

                                 .

            BVQBVQ

 

 

By simplify (3.29) to,

 

                        .               .

                 AVQ  =  A VBORG  +  AΩB  x   AΩB  x  A R BQ

                                                                            B

 

 

Use the result to calculate the linear motion of the link of a manipulator.

 

 

 

 

3.3.2  Angular motion

 

By rotating {B} relative to {A} with  AΩB and {C} rotating relative to{B} with BΩC . To calculate  AΩC the sum of vectors in frame {A} :

 

                                              

                           AΩB = AΩB  +  A R BΩC                           (3.31)

                                              B

 

By differentiating it can be obtain:

 

Text Box: d

                           

                          .             .

                      AΩC  =     AΩB  +  ___     A R BΩC                        (3.32)

Text Box: dt         B             
                                                            B

 

                                                          

 

Then by applying (3.25) to the last term of (3.32), this becomes:

 

 

                              .             .                                 

                        AΩC  = AΩB  +  A R BΩC  + AΩB  A R BΩC               (3.33)

                                                             B                                   B

 

 

Use the result to calculate the angular motion of a link of a manipulator.

 

 

 

 

 

Back to top