Text Box: NEXT
 

                                                                         

Text Box: PREVIOUS

 

 

3.1 Force and Moment Transformation

 


 

Description of the angular velocity of link ί+1 with respect from {ί+1},

 

                                                                                            .

                                    ί+1 ω ί+1  =  ί+1 ί ω ί + θ ί+1 ί+1 Ž ί+1                                       (3.1)

                                                                    ί

 

The linear velocity of the origin of frame {ί+1} is the same as that of the origin of from {ί} plus a new component caused by rotational velocity of link ί. Therefore it will become:

 

 

                                    ί ν ί+1  =   ί ν ί  + ί ω ί  X  ί P ί +1          (3.2)                               

                               

By multiplying both side with    ί+1 R   this can be compute:

                                               ί

 

 

                                    ί ν ί+1  =   ί+1 R  ( ί ν ί  + ί ω ί  X  ί P ί +1                  (3.3)

                                             ί

 

 

 

Write (3.1) and (3.2) in matrix form to transform general velocity vectors in frame {A} to their description in frame {B}. Since the two frames involved here are rigidly connected θ ί+1 appearing in (3.1) is set to zero:

 

 

 


 

                                        B ν B              B R         B R PBORG X        A ν                                              A         A

                                                    =                       

                                                                                                                                                             (3.4)

                                        B ω B                  0           BR                   A ω A

                                                                    A           

      

 

 

Then the cross product of the matrix operator:

 

 

 


 

                                                    0      Px      Py

                         PX   =       Px       0       Px                                            (3.5)

                                         Px        Px      0

 

 

 

 

(3.4) is relates velocity in one frame to those in another, this is called a velocity transformation and symbol use as Tν . The velocity transformation which maps velocities in {A} in to velocities in {B}, (3.4) can be express in compactly as:

 

                                                            B ν B   A Tν A ν A                      (3.6)

                                                                               B

 

 

By invert (3.4) compute the description of velocity in terms of {A} when given the values in {B} :

 

                                                            A ν A  =   B TνB ν B                  (3.7)

                                                                               A

 

 

 

This mapping of velocities form frame to frame depend on  Amust be interpreted as instantaneous results unless the relationship between the two frames is                          B

                                                                                        

static. From (3.8) and (3.9) transfer general force vectors written in terms of {B} into frame {A}:       

 

 

 

                                                            ί ƒ ί  =   ί R   ί+1 ƒ ί+1              (3.8)

                                                           ί+1

 

 

                                                            ί n ί  =  ίR   ί+1 n ί+1  +  ί P ί+1  x  ί ƒ ί         (3.9)

                                                                              ί+1

 

 


 

                                                           

                     A F A              A R                                  0             B F B 

                                =     B              

                                                                                                                                                             

                  A N A            A R PBORG  X    AR      A R              B N B                         (3.10)

                                                 B                            B          B

 

 

 

 

 

 

This can be express in compactly as:

 

 

                                                     A F A  =   A Tƒ B F B                    (3.11)

                                                          B

 

 

Tƒ is force and moment transformation. Velocity and force transformation are similar they relate and forces in different coordinate system. So this can be expressed as:

 

 

                                                            B Tƒ  =  A Tν T

                                                                         B

                                                           

 

 

Back to top